Genetic inducible fate mapping in larval zebrafish reveals origins of adult insulin-producing β-cells.
نویسندگان
چکیده
The Notch-signaling pathway is known to be fundamental in controlling pancreas differentiation. We now report on using Cre-based fate mapping to indelibly label pancreatic Notch-responsive cells (PNCs) at larval stages and follow their fate in the adult pancreas. We show that the PNCs represent a population of progenitors that can differentiate to multiple lineages, including adult ductal cells, centroacinar cells (CACs) and endocrine cells. These endocrine cells include the insulin-producing β-cells. CACs are a functional component of the exocrine pancreas; however, our fate-mapping results indicate that CACs are more closely related to endocrine cells by lineage as they share a common progenitor. The majority of the exocrine pancreas consists of the secretory acinar cells; however, we only detect a very limited contribution of PNCs to acinar cells. To explain this observation we re-examined early events in pancreas formation. The pancreatic anlage that gives rise to the exocrine pancreas is located in the ventral gut endoderm (called the ventral bud). Ptf1a is a gene required for exocrine pancreas development and is first expressed as the ventral bud forms. We used transgenic marker lines to observe both the domain of cells expressing ptf1a and cells responding to Notch signaling. We do not detect any overlap in expression and demonstrate that the ventral bud consists of two cell populations: a ptf1-expressing domain and a Notch-responsive progenitor core. As pancreas organogenesis continues, the ventral bud derived PNCs align along the duct, remain multipotent and later in development differentiate to form secondary islets, ducts and CACs.
منابع مشابه
Temporal-Spatial Resolution Fate Mapping Reveals Distinct Origins for Embryonic and Adult Microglia in Zebrafish.
Microglia are CNS resident macrophages, and they play important roles in neural development and function. Recent studies have suggested that murine microglia arise from a single source, the yolk sac (YS), yet these studies lack spatial resolution to define the bona fide source(s) for microglia. Here, using light-induced high temporal-spatial resolution fate mapping, we challenge this single-sou...
متن کاملCentroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration
Diabetes is associated with a paucity of insulin-producing β-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsi...
متن کاملOvernutrition induces β-cell differentiation through prolonged activation of β-cells in zebrafish larvae.
Insulin from islet β-cells maintains glucose homeostasis by stimulating peripheral tissues to remove glucose from circulation. Persistent elevation of insulin demand increases β-cell number through self-replication or differentiation (neogenesis) as part of a compensatory response. However, it is not well understood how a persistent increase in insulin demand is detected. We have previously dem...
متن کاملIrf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis.
In vertebrates, myeloid cells comprise polymorphonuclear and mononuclear lineages that arise from 2 successive waves of development: a transitory primitive wave giving rise to limited myeloid cells during embryonic stage and a definitive wave capable of producing myeloid cells throughout the fetal and adult life. One key unresolved question is what factors dictate polymorphonuclear versus monon...
متن کاملThe first wave of T lymphopoiesis in zebrafish arises from aorta endothelium independent of hematopoietic stem cells.
T lymphocytes are key cellular components of the adaptive immune system and play a central role in cell-mediated immunity in vertebrates. Despite their heterogeneities, it is believed that all different types of T lymphocytes are generated exclusively via the differentiation of hematopoietic stem cells (HSCs). Using temporal-spatial resolved fate-mapping analysis and time-lapse imaging, here we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 138 4 شماره
صفحات -
تاریخ انتشار 2011